Fraction.java 33.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
package com.taover.easyexcel.metadata.format;

import static org.junit.Assert.assertTrue;

import java.math.BigInteger;

/**
 * 这个类直接从org.apache.commons.lang3.math.Fraction复制过来的
 * 原因有2:
 * 1. 是不用再引用那个jar包了
 * 2. poi的SimpleFraction会有精度损失(poi使用的是int标识分子分母)
 */
/**
 * <p><code>Fraction</code> is a <code>Number</code> implementation that
 * stores fractions accurately.</p>
 *
 * <p>This class is immutable, and interoperable with most methods that accept
 * a <code>Number</code>.</p>
 *
 * <p>Note that this class is intended for common use cases, it is <i>int</i>
 * based and thus suffers from various overflow issues. For a BigInteger based
 * equivalent, please see the Commons Math BigFraction class. </p>
 *
 * @since 2.0
 */
public class Fraction extends Number implements Comparable<Fraction>  {

    /**
     * Required for serialization support. Lang version 2.0.
     *
     * @see java.io.Serializable
     */
    private static final long serialVersionUID = 65382027393090L;

    /**
     * <code>Fraction</code> representation of 0.
     */
    public static final Fraction ZERO = new Fraction(0, 1);
    /**
     * <code>Fraction</code> representation of 1.
     */
    public static final Fraction ONE = new Fraction(1, 1);
    /**
     * <code>Fraction</code> representation of 1/2.
     */
    public static final Fraction ONE_HALF = new Fraction(1, 2);
    /**
     * <code>Fraction</code> representation of 1/3.
     */
    public static final Fraction ONE_THIRD = new Fraction(1, 3);
    /**
     * <code>Fraction</code> representation of 2/3.
     */
    public static final Fraction TWO_THIRDS = new Fraction(2, 3);
    /**
     * <code>Fraction</code> representation of 1/4.
     */
    public static final Fraction ONE_QUARTER = new Fraction(1, 4);
    /**
     * <code>Fraction</code> representation of 2/4.
     */
    public static final Fraction TWO_QUARTERS = new Fraction(2, 4);
    /**
     * <code>Fraction</code> representation of 3/4.
     */
    public static final Fraction THREE_QUARTERS = new Fraction(3, 4);
    /**
     * <code>Fraction</code> representation of 1/5.
     */
    public static final Fraction ONE_FIFTH = new Fraction(1, 5);
    /**
     * <code>Fraction</code> representation of 2/5.
     */
    public static final Fraction TWO_FIFTHS = new Fraction(2, 5);
    /**
     * <code>Fraction</code> representation of 3/5.
     */
    public static final Fraction THREE_FIFTHS = new Fraction(3, 5);
    /**
     * <code>Fraction</code> representation of 4/5.
     */
    public static final Fraction FOUR_FIFTHS = new Fraction(4, 5);


    /**
     * The numerator number part of the fraction (the three in three sevenths).
     */
    private final int numerator;
    /**
     * The denominator number part of the fraction (the seven in three sevenths).
     */
    private final int denominator;

    /**
     * Cached output hashCode (class is immutable).
     */
    private transient int hashCode = 0;
    /**
     * Cached output toString (class is immutable).
     */
    private transient String toString = null;
    /**
     * Cached output toProperString (class is immutable).
     */
    private transient String toProperString = null;

    /**
     * <p>Constructs a <code>Fraction</code> instance with the 2 parts
     * of a fraction Y/Z.</p>
     *
     * @param numerator  the numerator, for example the three in 'three sevenths'
     * @param denominator  the denominator, for example the seven in 'three sevenths'
     */
    private Fraction(final int numerator, final int denominator) {
        super();
        this.numerator = numerator;
        this.denominator = denominator;
    }

    /**
     * <p>Creates a <code>Fraction</code> instance with the 2 parts
     * of a fraction Y/Z.</p>
     *
     * <p>Any negative signs are resolved to be on the numerator.</p>
     *
     * @param numerator  the numerator, for example the three in 'three sevenths'
     * @param denominator  the denominator, for example the seven in 'three sevenths'
     * @return a new fraction instance
     * @throws ArithmeticException if the denominator is <code>zero</code>
     * or the denominator is {@code negative} and the numerator is {@code Integer#MIN_VALUE}
     */
    public static Fraction getFraction(int numerator, int denominator) {
        if (denominator == 0) {
            throw new ArithmeticException("The denominator must not be zero");
        }
        if (denominator < 0) {
            if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) {
                throw new ArithmeticException("overflow: can't negate");
            }
            numerator = -numerator;
            denominator = -denominator;
        }
        return new Fraction(numerator, denominator);
    }

    /**
     * <p>Creates a <code>Fraction</code> instance with the 3 parts
     * of a fraction X Y/Z.</p>
     *
     * <p>The negative sign must be passed in on the whole number part.</p>
     *
     * @param whole  the whole number, for example the one in 'one and three sevenths'
     * @param numerator  the numerator, for example the three in 'one and three sevenths'
     * @param denominator  the denominator, for example the seven in 'one and three sevenths'
     * @return a new fraction instance
     * @throws ArithmeticException if the denominator is <code>zero</code>
     * @throws ArithmeticException if the denominator is negative
     * @throws ArithmeticException if the numerator is negative
     * @throws ArithmeticException if the resulting numerator exceeds
     *  <code>Integer.MAX_VALUE</code>
     */
    public static Fraction getFraction(final int whole, final int numerator, final int denominator) {
        if (denominator == 0) {
            throw new ArithmeticException("The denominator must not be zero");
        }
        if (denominator < 0) {
            throw new ArithmeticException("The denominator must not be negative");
        }
        if (numerator < 0) {
            throw new ArithmeticException("The numerator must not be negative");
        }
        long numeratorValue;
        if (whole < 0) {
            numeratorValue = whole * (long) denominator - numerator;
        } else {
            numeratorValue = whole * (long) denominator + numerator;
        }
        if (numeratorValue < Integer.MIN_VALUE || numeratorValue > Integer.MAX_VALUE) {
            throw new ArithmeticException("Numerator too large to represent as an Integer.");
        }
        return new Fraction((int) numeratorValue, denominator);
    }

    /**
     * <p>Creates a reduced <code>Fraction</code> instance with the 2 parts
     * of a fraction Y/Z.</p>
     *
     * <p>For example, if the input parameters represent 2/4, then the created
     * fraction will be 1/2.</p>
     *
     * <p>Any negative signs are resolved to be on the numerator.</p>
     *
     * @param numerator  the numerator, for example the three in 'three sevenths'
     * @param denominator  the denominator, for example the seven in 'three sevenths'
     * @return a new fraction instance, with the numerator and denominator reduced
     * @throws ArithmeticException if the denominator is <code>zero</code>
     */
    public static Fraction getReducedFraction(int numerator, int denominator) {
        if (denominator == 0) {
            throw new ArithmeticException("The denominator must not be zero");
        }
        if (numerator == 0) {
            return ZERO; // normalize zero.
        }
        // allow 2^k/-2^31 as a valid fraction (where k>0)
        if (denominator == Integer.MIN_VALUE && (numerator & 1) == 0) {
            numerator /= 2;
            denominator /= 2;
        }
        if (denominator < 0) {
            if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) {
                throw new ArithmeticException("overflow: can't negate");
            }
            numerator = -numerator;
            denominator = -denominator;
        }
        // simplify fraction.
        final int gcd = greatestCommonDivisor(numerator, denominator);
        numerator /= gcd;
        denominator /= gcd;
        return new Fraction(numerator, denominator);
    }

    /**
     * <p>Creates a <code>Fraction</code> instance from a <code>double</code> value.</p>
     *
     * <p>This method uses the <a href="http://archives.math.utk.edu/articles/atuyl/confrac/">
     *  continued fraction algorithm</a>, computing a maximum of
     *  25 convergents and bounding the denominator by 10,000.</p>
     *
     * @param value  the double value to convert
     * @return a new fraction instance that is close to the value
     * @throws ArithmeticException if <code>|value| &gt; Integer.MAX_VALUE</code>
     *  or <code>value = NaN</code>
     * @throws ArithmeticException if the calculated denominator is <code>zero</code>
     * @throws ArithmeticException if the the algorithm does not converge
     */
    public static Fraction getFraction(double value) {
        final int sign = value < 0 ? -1 : 1;
        value = Math.abs(value);
        if (value > Integer.MAX_VALUE || Double.isNaN(value)) {
            throw new ArithmeticException("The value must not be greater than Integer.MAX_VALUE or NaN");
        }
        final int wholeNumber = (int) value;
        value -= wholeNumber;

        int numer0 = 0; // the pre-previous
        int denom0 = 1; // the pre-previous
        int numer1 = 1; // the previous
        int denom1 = 0; // the previous
        int numer2 = 0; // the current, setup in calculation
        int denom2 = 0; // the current, setup in calculation
        int a1 = (int) value;
        int a2 = 0;
        double x1 = 1;
        double x2 = 0;
        double y1 = value - a1;
        double y2 = 0;
        double delta1, delta2 = Double.MAX_VALUE;
        double fraction;
        int i = 1;
        // System.out.println("---");
        do {
            delta1 = delta2;
            a2 = (int) (x1 / y1);
            x2 = y1;
            y2 = x1 - a2 * y1;
            numer2 = a1 * numer1 + numer0;
            denom2 = a1 * denom1 + denom0;
            fraction = (double) numer2 / (double) denom2;
            delta2 = Math.abs(value - fraction);
            // System.out.println(numer2 + " " + denom2 + " " + fraction + " " + delta2 + " " + y1);
            a1 = a2;
            x1 = x2;
            y1 = y2;
            numer0 = numer1;
            denom0 = denom1;
            numer1 = numer2;
            denom1 = denom2;
            i++;
            // System.out.println(">>" + delta1 +" "+ delta2+" "+(delta1 > delta2)+" "+i+" "+denom2);
        } while (delta1 > delta2 && denom2 <= 10000 && denom2 > 0 && i < 25);
        if (i == 25) {
            throw new ArithmeticException("Unable to convert double to fraction");
        }
        return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0);
    }

    /**
     * <p>Creates a Fraction from a <code>String</code>.</p>
     *
     * <p>The formats accepted are:</p>
     *
     * <ol>
     *  <li><code>double</code> String containing a dot</li>
     *  <li>'X Y/Z'</li>
     *  <li>'Y/Z'</li>
     *  <li>'X' (a simple whole number)</li>
     * </ol>
     * <p>and a .</p>
     *
     * @param str  the string to parse, must not be <code>null</code>
     * @return the new <code>Fraction</code> instance
     * @throws IllegalArgumentException if the string is <code>null</code>
     * @throws NumberFormatException if the number format is invalid
     */
    public static Fraction getFraction(String str) {
        assertTrue("The string must not be null", str != null);
        // parse double format
        int pos = str.indexOf('.');
        if (pos >= 0) {
            return getFraction(Double.parseDouble(str));
        }

        // parse X Y/Z format
        pos = str.indexOf(' ');
        if (pos > 0) {
            final int whole = Integer.parseInt(str.substring(0, pos));
            str = str.substring(pos + 1);
            pos = str.indexOf('/');
            if (pos < 0) {
                throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z");
            }
            final int numer = Integer.parseInt(str.substring(0, pos));
            final int denom = Integer.parseInt(str.substring(pos + 1));
            return getFraction(whole, numer, denom);
        }

        // parse Y/Z format
        pos = str.indexOf('/');
        if (pos < 0) {
            // simple whole number
            return getFraction(Integer.parseInt(str), 1);
        }
        final int numer = Integer.parseInt(str.substring(0, pos));
        final int denom = Integer.parseInt(str.substring(pos + 1));
        return getFraction(numer, denom);
    }

    // Accessors
    //-------------------------------------------------------------------

    /**
     * <p>Gets the numerator part of the fraction.</p>
     *
     * <p>This method may return a value greater than the denominator, an
     * improper fraction, such as the seven in 7/4.</p>
     *
     * @return the numerator fraction part
     */
    public int getNumerator() {
        return numerator;
    }

    /**
     * <p>Gets the denominator part of the fraction.</p>
     *
     * @return the denominator fraction part
     */
    public int getDenominator() {
        return denominator;
    }

    /**
     * <p>Gets the proper numerator, always positive.</p>
     *
     * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
     * This method returns the 3 from the proper fraction.</p>
     *
     * <p>If the fraction is negative such as -7/4, it can be resolved into
     * -1 3/4, so this method returns the positive proper numerator, 3.</p>
     *
     * @return the numerator fraction part of a proper fraction, always positive
     */
    public int getProperNumerator() {
        return Math.abs(numerator % denominator);
    }

    /**
     * <p>Gets the proper whole part of the fraction.</p>
     *
     * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
     * This method returns the 1 from the proper fraction.</p>
     *
     * <p>If the fraction is negative such as -7/4, it can be resolved into
     * -1 3/4, so this method returns the positive whole part -1.</p>
     *
     * @return the whole fraction part of a proper fraction, that includes the sign
     */
    public int getProperWhole() {
        return numerator / denominator;
    }

    // Number methods
    //-------------------------------------------------------------------

    /**
     * <p>Gets the fraction as an <code>int</code>. This returns the whole number
     * part of the fraction.</p>
     *
     * @return the whole number fraction part
     */
    @Override
    public int intValue() {
        return numerator / denominator;
    }

    /**
     * <p>Gets the fraction as a <code>long</code>. This returns the whole number
     * part of the fraction.</p>
     *
     * @return the whole number fraction part
     */
    @Override
    public long longValue() {
        return (long) numerator / denominator;
    }

    /**
     * <p>Gets the fraction as a <code>float</code>. This calculates the fraction
     * as the numerator divided by denominator.</p>
     *
     * @return the fraction as a <code>float</code>
     */
    @Override
    public float floatValue() {
        return (float) numerator / (float) denominator;
    }

    /**
     * <p>Gets the fraction as a <code>double</code>. This calculates the fraction
     * as the numerator divided by denominator.</p>
     *
     * @return the fraction as a <code>double</code>
     */
    @Override
    public double doubleValue() {
        return (double) numerator / (double) denominator;
    }

    // Calculations
    //-------------------------------------------------------------------

    /**
     * <p>Reduce the fraction to the smallest values for the numerator and
     * denominator, returning the result.</p>
     *
     * <p>For example, if this fraction represents 2/4, then the result
     * will be 1/2.</p>
     *
     * @return a new reduced fraction instance, or this if no simplification possible
     */
    public Fraction reduce() {
        if (numerator == 0) {
            return equals(ZERO) ? this : ZERO;
        }
        final int gcd = greatestCommonDivisor(Math.abs(numerator), denominator);
        if (gcd == 1) {
            return this;
        }
        return Fraction.getFraction(numerator / gcd, denominator / gcd);
    }

    /**
     * <p>Gets a fraction that is the inverse (1/fraction) of this one.</p>
     *
     * <p>The returned fraction is not reduced.</p>
     *
     * @return a new fraction instance with the numerator and denominator
     *         inverted.
     * @throws ArithmeticException if the fraction represents zero.
     */
    public Fraction invert() {
        if (numerator == 0) {
            throw new ArithmeticException("Unable to invert zero.");
        }
        if (numerator==Integer.MIN_VALUE) {
            throw new ArithmeticException("overflow: can't negate numerator");
        }
        if (numerator<0) {
            return new Fraction(-denominator, -numerator);
        }
        return new Fraction(denominator, numerator);
    }

    /**
     * <p>Gets a fraction that is the negative (-fraction) of this one.</p>
     *
     * <p>The returned fraction is not reduced.</p>
     *
     * @return a new fraction instance with the opposite signed numerator
     */
    public Fraction negate() {
        // the positive range is one smaller than the negative range of an int.
        if (numerator==Integer.MIN_VALUE) {
            throw new ArithmeticException("overflow: too large to negate");
        }
        return new Fraction(-numerator, denominator);
    }

    /**
     * <p>Gets a fraction that is the positive equivalent of this one.</p>
     * <p>More precisely: <code>(fraction &gt;= 0 ? this : -fraction)</code></p>
     *
     * <p>The returned fraction is not reduced.</p>
     *
     * @return <code>this</code> if it is positive, or a new positive fraction
     *  instance with the opposite signed numerator
     */
    public Fraction abs() {
        if (numerator >= 0) {
            return this;
        }
        return negate();
    }

    /**
     * <p>Gets a fraction that is raised to the passed in power.</p>
     *
     * <p>The returned fraction is in reduced form.</p>
     *
     * @param power  the power to raise the fraction to
     * @return <code>this</code> if the power is one, <code>ONE</code> if the power
     * is zero (even if the fraction equals ZERO) or a new fraction instance
     * raised to the appropriate power
     * @throws ArithmeticException if the resulting numerator or denominator exceeds
     *  <code>Integer.MAX_VALUE</code>
     */
    public Fraction pow(final int power) {
        if (power == 1) {
            return this;
        } else if (power == 0) {
            return ONE;
        } else if (power < 0) {
            if (power == Integer.MIN_VALUE) { // MIN_VALUE can't be negated.
                return this.invert().pow(2).pow(-(power / 2));
            }
            return this.invert().pow(-power);
        } else {
            final Fraction f = this.multiplyBy(this);
            if (power % 2 == 0) { // if even...
                return f.pow(power / 2);
            }
            return f.pow(power / 2).multiplyBy(this);
        }
    }

    /**
     * <p>Gets the greatest common divisor of the absolute value of
     * two numbers, using the "binary gcd" method which avoids
     * division and modulo operations.  See Knuth 4.5.2 algorithm B.
     * This algorithm is due to Josef Stein (1961).</p>
     *
     * @param u  a non-zero number
     * @param v  a non-zero number
     * @return the greatest common divisor, never zero
     */
    private static int greatestCommonDivisor(int u, int v) {
        // From Commons Math:
        if (u == 0 || v == 0) {
            if (u == Integer.MIN_VALUE || v == Integer.MIN_VALUE) {
                throw new ArithmeticException("overflow: gcd is 2^31");
            }
            return Math.abs(u) + Math.abs(v);
        }
        // if either operand is abs 1, return 1:
        if (Math.abs(u) == 1 || Math.abs(v) == 1) {
            return 1;
        }
        // keep u and v negative, as negative integers range down to
        // -2^31, while positive numbers can only be as large as 2^31-1
        // (i.e. we can't necessarily negate a negative number without
        // overflow)
        if (u > 0) {
            u = -u;
        } // make u negative
        if (v > 0) {
            v = -v;
        } // make v negative
        // B1. [Find power of 2]
        int k = 0;
        while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are both even...
            u /= 2;
            v /= 2;
            k++; // cast out twos.
        }
        if (k == 31) {
            throw new ArithmeticException("overflow: gcd is 2^31");
        }
        // B2. Initialize: u and v have been divided by 2^k and at least
        // one is odd.
        int t = (u & 1) == 1 ? v : -(u / 2)/* B3 */;
        // t negative: u was odd, v may be even (t replaces v)
        // t positive: u was even, v is odd (t replaces u)
        do {
            /* assert u<0 && v<0; */
            // B4/B3: cast out twos from t.
            while ((t & 1) == 0) { // while t is even..
                t /= 2; // cast out twos
            }
            // B5 [reset max(u,v)]
            if (t > 0) {
                u = -t;
            } else {
                v = t;
            }
            // B6/B3. at this point both u and v should be odd.
            t = (v - u) / 2;
            // |u| larger: t positive (replace u)
            // |v| larger: t negative (replace v)
        } while (t != 0);
        return -u * (1 << k); // gcd is u*2^k
    }

    // Arithmetic
    //-------------------------------------------------------------------

    /**
     * Multiply two integers, checking for overflow.
     *
     * @param x a factor
     * @param y a factor
     * @return the product <code>x*y</code>
     * @throws ArithmeticException if the result can not be represented as
     *                             an int
     */
    private static int mulAndCheck(final int x, final int y) {
        final long m = (long) x * (long) y;
        if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
            throw new ArithmeticException("overflow: mul");
        }
        return (int) m;
    }

    /**
     *  Multiply two non-negative integers, checking for overflow.
     *
     * @param x a non-negative factor
     * @param y a non-negative factor
     * @return the product <code>x*y</code>
     * @throws ArithmeticException if the result can not be represented as
     * an int
     */
    private static int mulPosAndCheck(final int x, final int y) {
        /* assert x>=0 && y>=0; */
        final long m = (long) x * (long) y;
        if (m > Integer.MAX_VALUE) {
            throw new ArithmeticException("overflow: mulPos");
        }
        return (int) m;
    }

    /**
     * Add two integers, checking for overflow.
     *
     * @param x an addend
     * @param y an addend
     * @return the sum <code>x+y</code>
     * @throws ArithmeticException if the result can not be represented as
     * an int
     */
    private static int addAndCheck(final int x, final int y) {
        final long s = (long) x + (long) y;
        if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
            throw new ArithmeticException("overflow: add");
        }
        return (int) s;
    }

    /**
     * Subtract two integers, checking for overflow.
     *
     * @param x the minuend
     * @param y the subtrahend
     * @return the difference <code>x-y</code>
     * @throws ArithmeticException if the result can not be represented as
     * an int
     */
    private static int subAndCheck(final int x, final int y) {
        final long s = (long) x - (long) y;
        if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
            throw new ArithmeticException("overflow: add");
        }
        return (int) s;
    }

    /**
     * <p>Adds the value of this fraction to another, returning the result in reduced form.
     * The algorithm follows Knuth, 4.5.1.</p>
     *
     * @param fraction  the fraction to add, must not be <code>null</code>
     * @return a <code>Fraction</code> instance with the resulting values
     * @throws IllegalArgumentException if the fraction is <code>null</code>
     * @throws ArithmeticException if the resulting numerator or denominator exceeds
     *  <code>Integer.MAX_VALUE</code>
     */
    public Fraction add(final Fraction fraction) {
        return addSub(fraction, true /* add */);
    }

    /**
     * <p>Subtracts the value of another fraction from the value of this one,
     * returning the result in reduced form.</p>
     *
     * @param fraction  the fraction to subtract, must not be <code>null</code>
     * @return a <code>Fraction</code> instance with the resulting values
     * @throws IllegalArgumentException if the fraction is <code>null</code>
     * @throws ArithmeticException if the resulting numerator or denominator
     *   cannot be represented in an <code>int</code>.
     */
    public Fraction subtract(final Fraction fraction) {
        return addSub(fraction, false /* subtract */);
    }

    /**
     * Implement add and subtract using algorithm described in Knuth 4.5.1.
     *
     * @param fraction the fraction to subtract, must not be <code>null</code>
     * @param isAdd true to add, false to subtract
     * @return a <code>Fraction</code> instance with the resulting values
     * @throws IllegalArgumentException if the fraction is <code>null</code>
     * @throws ArithmeticException if the resulting numerator or denominator
     *   cannot be represented in an <code>int</code>.
     */
    private Fraction addSub(final Fraction fraction, final boolean isAdd) {
    	assertTrue("The fraction must not be null", fraction != null);
        // zero is identity for addition.
        if (numerator == 0) {
            return isAdd ? fraction : fraction.negate();
        }
        if (fraction.numerator == 0) {
            return this;
        }
        // if denominators are randomly distributed, d1 will be 1 about 61%
        // of the time.
        final int d1 = greatestCommonDivisor(denominator, fraction.denominator);
        if (d1 == 1) {
            // result is ( (u*v' +/- u'v) / u'v')
            final int uvp = mulAndCheck(numerator, fraction.denominator);
            final int upv = mulAndCheck(fraction.numerator, denominator);
            return new Fraction(isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv), mulPosAndCheck(denominator,
                    fraction.denominator));
        }
        // the quantity 't' requires 65 bits of precision; see knuth 4.5.1
        // exercise 7. we're going to use a BigInteger.
        // t = u(v'/d1) +/- v(u'/d1)
        final BigInteger uvp = BigInteger.valueOf(numerator).multiply(BigInteger.valueOf(fraction.denominator / d1));
        final BigInteger upv = BigInteger.valueOf(fraction.numerator).multiply(BigInteger.valueOf(denominator / d1));
        final BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv);
        // but d2 doesn't need extra precision because
        // d2 = gcd(t,d1) = gcd(t mod d1, d1)
        final int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
        final int d2 = tmodd1 == 0 ? d1 : greatestCommonDivisor(tmodd1, d1);

        // result is (t/d2) / (u'/d1)(v'/d2)
        final BigInteger w = t.divide(BigInteger.valueOf(d2));
        if (w.bitLength() > 31) {
            throw new ArithmeticException("overflow: numerator too large after multiply");
        }
        return new Fraction(w.intValue(), mulPosAndCheck(denominator / d1, fraction.denominator / d2));
    }

    /**
     * <p>Multiplies the value of this fraction by another, returning the
     * result in reduced form.</p>
     *
     * @param fraction  the fraction to multiply by, must not be <code>null</code>
     * @return a <code>Fraction</code> instance with the resulting values
     * @throws IllegalArgumentException if the fraction is <code>null</code>
     * @throws ArithmeticException if the resulting numerator or denominator exceeds
     *  <code>Integer.MAX_VALUE</code>
     */
    public Fraction multiplyBy(final Fraction fraction) {
    	assertTrue("The fraction must not be null", fraction != null);
        if (numerator == 0 || fraction.numerator == 0) {
            return ZERO;
        }
        // knuth 4.5.1
        // make sure we don't overflow unless the result *must* overflow.
        final int d1 = greatestCommonDivisor(numerator, fraction.denominator);
        final int d2 = greatestCommonDivisor(fraction.numerator, denominator);
        return getReducedFraction(mulAndCheck(numerator / d1, fraction.numerator / d2),
                mulPosAndCheck(denominator / d2, fraction.denominator / d1));
    }

    /**
     * <p>Divide the value of this fraction by another.</p>
     *
     * @param fraction  the fraction to divide by, must not be <code>null</code>
     * @return a <code>Fraction</code> instance with the resulting values
     * @throws IllegalArgumentException if the fraction is <code>null</code>
     * @throws ArithmeticException if the fraction to divide by is zero
     * @throws ArithmeticException if the resulting numerator or denominator exceeds
     *  <code>Integer.MAX_VALUE</code>
     */
    public Fraction divideBy(final Fraction fraction) {
        assertTrue("The fraction must not be null", fraction != null);
        if (fraction.numerator == 0) {
            throw new ArithmeticException("The fraction to divide by must not be zero");
        }
        return multiplyBy(fraction.invert());
    }

    // Basics
    //-------------------------------------------------------------------

    /**
     * <p>Compares this fraction to another object to test if they are equal.</p>.
     *
     * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p>
     *
     * @param obj the reference object with which to compare
     * @return <code>true</code> if this object is equal
     */
    @Override
    public boolean equals(final Object obj) {
        if (obj == this) {
            return true;
        }
        if (!(obj instanceof Fraction)) {
            return false;
        }
        final Fraction other = (Fraction) obj;
        return getNumerator() == other.getNumerator() && getDenominator() == other.getDenominator();
    }

    /**
     * <p>Gets a hashCode for the fraction.</p>
     *
     * @return a hash code value for this object
     */
    @Override
    public int hashCode() {
        if (hashCode == 0) {
            // hash code update should be atomic.
            hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator();
        }
        return hashCode;
    }

    /**
     * <p>Compares this object to another based on size.</p>
     *
     * <p>Note: this class has a natural ordering that is inconsistent
     * with equals, because, for example, equals treats 1/2 and 2/4 as
     * different, whereas compareTo treats them as equal.
     *
     * @param other  the object to compare to
     * @return -1 if this is less, 0 if equal, +1 if greater
     * @throws ClassCastException if the object is not a <code>Fraction</code>
     * @throws NullPointerException if the object is <code>null</code>
     */
    @Override
    public int compareTo(final Fraction other) {
        if (this == other) {
            return 0;
        }
        if (numerator == other.numerator && denominator == other.denominator) {
            return 0;
        }

        // otherwise see which is less
        final long first = (long) numerator * (long) other.denominator;
        final long second = (long) other.numerator * (long) denominator;
        if (first == second) {
            return 0;
        } else if (first < second) {
            return -1;
        } else {
            return 1;
        }
    }

    /**
     * <p>Gets the fraction as a <code>String</code>.</p>
     *
     * <p>The format used is '<i>numerator</i>/<i>denominator</i>' always.
     *
     * @return a <code>String</code> form of the fraction
     */
    @Override
    public String toString() {
        if (toString == null) {
            toString = getNumerator() + "/" + getDenominator();
        }
        return toString;
    }

    /**
     * <p>Gets the fraction as a proper <code>String</code> in the format X Y/Z.</p>
     *
     * <p>The format used in '<i>wholeNumber</i> <i>numerator</i>/<i>denominator</i>'.
     * If the whole number is zero it will be omitted. If the numerator is zero,
     * only the whole number is returned.</p>
     *
     * @return a <code>String</code> form of the fraction
     */
    public String toProperString() {
        if (toProperString == null) {
            if (numerator == 0) {
                toProperString = "0";
            } else if (numerator == denominator) {
                toProperString = "1";
            } else if (numerator == -1 * denominator) {
                toProperString = "-1";
            } else if ((numerator > 0 ? -numerator : numerator) < -denominator) {
                // note that we do the magnitude comparison test above with
                // NEGATIVE (not positive) numbers, since negative numbers
                // have a larger range. otherwise numerator==Integer.MIN_VALUE
                // is handled incorrectly.
                final int properNumerator = getProperNumerator();
                if (properNumerator == 0) {
                    toProperString = Integer.toString(getProperWhole());
                } else {
                    toProperString = getProperWhole() + " " + properNumerator + "/" + getDenominator();
                }
            } else {
                toProperString = getNumerator() + "/" + getDenominator();
            }
        }
        return toProperString;
    }
}